Geolympus

GeoPACS GeoTR GeoStaR GeoWZ

Gelympus

GeOlympus Workstation

GeoPACS determines static and NMO corrections on the basis of apriori distribution of the horizon velocities and time assigned either on model interval or on all stack traces. PP,SS and PS wave types are supported.

GeoPACS corrects automatically both static and NMO corrections.

GeoPACS allows to set the horizon position on stack traces, to define automatically the horizons position on neighboring gather or line data, calculate short-period (with trend removal) and medium-period statics. Due to the thin setting of horizons it is possible to determine large amplitude statics (100 ms and more, up to 400ms for shear wave statics).

Sditr – well known and widely used solution for layer by layer delay, statics and refractor velocity estimation, source and receiver repositioning etc. Sditr offers fast processing of big data volumes in 2D and 3D cases.

GeoStaR is the interactive tool which allows to build and refine near-surface layers' model and calculate LVL static corrections using refracted wave first arrivals data.

GeoStaR can be used when there is multilayered or 3D variable on LVL velocity and depth i. e. when it is not possible to specify the offset range on which first arrivals are determined by head wave from dominant refractor.

GeoWZ allows to load and to interpret upholes ,to trace first breaks on weathering shots, to interpolate surfaces after interpretation, to build layered models using built and loaded elevation and velocity surfaces, to calculate static corrections.

GeoStaR

GeoStaR - interactive tool which allows to build and improve near-surface layers' model and calculate LVL static corrections using refracted wave first arrivals data.

Weathering zone model

Static corrections

Correspondence to travel time

GeoStaR can be used when there is multilayered or 3D variable on LVL velocity and depth i. e. when it is not possible to specify the offset range on which first arrivals are determined by head wave from dominant refractor.

GeoStaR – workflow

_	
	Data loading
	Control and data QC
1	Near-surface model building
l	Near-surface model iterative improvement
	Near-surface model QC
	Static corrections calculation
	Statics QC
	Export of correction, models and information for solution QC

GeoStaR – data loading

Data is loaded from the files, tables or headlines of the traces, filled with the geometry of sources/receivers and first arrivals marks Data loading is a three stages process which consists of data reading, its control and final loading.

GeoStaR – first arrivals tracing

group of companies

First arrivals tracing runs in manual, semiautomatic and automatic modes.

Display of the seismograms with linear velocity law and calculated and loaded statics applied.

GeoStaR

GeoStaR – near-surface modeling

Two ways of near-surface modeling are implemented

Thickness smoothing

Smoothing, when the layer boundaries are similar to ground surface or sea bottom.

Smoothing parameters

To create environment model, horizons and layer velocities are presented as parametric smooth functions.

All the calculations are made on regular lattice, and than the coefficients for smoothing window are defined.

Layered model – velocities and depths of the layers are represented by smooth functions, there is no vertical velocity gradient in each layer.

This way is suitable for modeling of the environments with sharply cut borders and large velocity gradients.

Grid model –the survey area is divided into the cells laterally and vertically. In each node of these cells the velocity value is set.

Such models can be used for gradient environment models building, with velocity inversions.

Grid model is usually built by preliminary updated layered model.

Elevation smooting

Smoothing, when the layer boundaries are not similar to ground surface or sea bottom.

Smoothin g window

Layer depths and velocities are computed using interpolation of values at control points. The values of refracted wave velocity, depth and interception time are entered, loaded or digitized at a control point for each layer.

The values can be entered or digitized by drawing the best adequacy line(s) through the points of the "Time/Offset" graph.

Control points should be defined by different positions, covering the survey area.

GeoStaR

GeoStaR – model QC

It is possible to use different information displays: maps, sections, graphs, tables, gathers for data and models QC at any stage of work.

GeoStaR – near surface layered model update

X–¤ LMI Updat	æ	• ×
Iterations LMI Updates Conjugate- gradient Offset range	3 20 (Meters or feet)	Automatic Editing Iterations before editing Threshold for deleting picks 1.0
To	1000.0	Short wave statics Iterations 10
Method Maximum de	Fast viation	Minimum fold 0.25
Layer 1 2	Limit 99999.0 200.0	Perform interpolation Edit before residuals Smoother (m/ft) 0.0
	Interval velocity	Submit As GeoStaR Proc 💌
Layer 1	999999.0	On //vwcef176/ ▼
2	99999.0	Store result
3	2000.0	O Same model
		New m3 i3
Temp path (server side)		
	Start It Re	eset Cancel

•The model update is performed by a separate module, which can work on a remote computer.

•To figure out optimal layered model modifications the iterative updating is applied to velocity and depth of each layer in order to minimize modelling errors.

•On first iteration only layer depths are updated.

•After the assigned number of iterations specifying layer depth/velocity the rest of modelling errors are allocated between sources and receivers (residual statics).

•To avoid the influence of first arrivals wrong marks it is possible to use auto editing: after the assigned number of iterations and residual static correction calculation, the marks with anomaly high values of residual statics are removed.

•It is possible to limit the model modification area for additional normalization.

GeoStaR – near surface gridded (Tomo) model update

Net model specification – is quite resource-intensive process, so the possibilities of multiple processor nodes and/or clusters can be used for this purpose.

Several iterations are used when specifying a module, they include the following:

- 1. Time field estimation and source-receiver ray tracing
 - 2. Computation of model travel times
- 3. Building equations set to define optimal model modification with permanent rays
 - 4. Smoothing and regularization of equations set
 - 5. Equations set solutions, calculation of optimal model modification

(-¤ Tomo upo	iate parametei	rs					
lterations Geologica	l iterations		1	Itera	Automat tions are editio	ic Editing	
Offset ran	ge (m/ft.)			Thre	shold f	or	
From	0.0 To	999	999.0	dele	ting pic	ks 2.0	
Method	TLR3		•	Short	wave s	tatics	
				Iter	ations	10	
				Mini	imum fo	ld 0.5	
Maximum	deviation			rati	erform i	nternolation	
Veloci	ty 5000.0	m or	ft / s	Edit before residuals			
Smoothing in the tomography Ix*Lx+Iy*Ly+Iz*Lz = 0						•	
IX	1.0	ly	1.0		Iz	1.0	
Raytracing I	nodel cell size	e (m/1	ft.)	Subr	nit As	GeoStaR Proc 🔻	
O Minim	um	30	.0	On		< Local > 🗸 🕶	
Maxim	um	60	.0	Store result			
O Other		15		ĕ	New In	15_12_11	
Enable parallelization No. of CPUs 2							
	Start It		Rese	a	Canc	el	

Ge () ympus

GEOLEADER

Seismic horizons can be set as on model as on the whole area. In the first case PACS defines automatically the horizon mark on each CDP .

GeoPACS

GeoPACS - calculation of cross-correlation function

Calculation of cross-correlation function is made within the limits of set time window. Window base is determined by horizon mark on stack section (as set directly as defined after the tracing)

Method of cross-correlation of input traces with model is used for travel time curve tracing.

In ordinary mode it does not matter what phase is chosen for definition of horizon marks, however there are phase tracing modes at which the horizon mark is shifted to the nearest extremum of the specified polarity.

GeoPACS – problem solution

N⁰	dTi	CCF	dT		
1	1.052	0	1.187		
2	2.777	8713	5.077		
3	2.869	9938	5.269		
4	1.578	10588	5.341		
5	1.228	12511	5.288		
6	1.075	12654	5.277		
7	0.911	12715	5.225		
8	0.921	12752	5.235		
9	0.906	12770	5.216		
10	0.936	6			
11	0.933	5		_	

After calculation of cross-correlation function (CCF), the solution is made by iterative method of weighted least squares of over specified equations set, where unknowns are static and NMO corrections, and reflected travel time curve deviation is minimized from theoretical travel time curve.

The additional information is used to regulate equation set – data about horizon "smoothness", interval of solution search, interval of velocity scanning etc.

Two solution methods are possible with short- and medium-period static corrections.

GeoPACS – example

9 horizons which spread on the whole survey area are chosen on model interval. Shortand medium statics are calculated and applied.

GeoWZ

The interactive tool, which allows to load and to interpret upholes, to trace first breaks on weathering shots, to interpolate surfaces after interpretation, to build layered models using built and loaded elevation and velocity surfaces, to calculate static corrections and to export models for further update in GeoStaR and other tools.

Loading geometry, upholes and weathering shots

Workflow

First arrivals tracing on weathering shots

Uphole interpretation

Interpolation or loading of layers' elevation, thickness and velocity surfaces (grids). Surface editing.

Near-surface layered model building using elevation, thickness and velocity surfaces (grids)

Statics calculation, export of near-surface models

GeoWZ – data loading

Data is loaded from the files, tables or traces headers filled with geometry of sources/receivers, first breaks; Excel tables, LAS- and text files with upholes.

Data loading is a three stages process which consists of data reading, its control and final loading.

GeoWZ – first arrivals tracing

group of companies

First arrivals tracing runs in manual, semi-automatic and automatic modes.

Display of the gathers with linear velocity law applied.

GeoWZ

GeoWZ – Upholes interpretation

Interpretation is performed using «Depth\Vertcal Time» display of the "CP Interpretation" diagram.

All upholes which fall inside defined search radius are displayed here along with layer border markers and interval velocities. The interpretation can be performed either graphically, by moving horizon markers along uphole curve (tabulated values are updated automatically) or by editing of layers' depths and velocities in the table.

The results of the interpretation can be saved into control points file to be re-used for model building in GeoStaR.

GeoWZ – surface interpolating and editing

The interpreted layers' depths and velocities are used to interpolate surfaces. Each surface represent one mono-valued function (thickness, elevation or velocity of defined layer). The set of interpreted curves and interpolation parameters can be adjusted for each surface independently from each other. But many curves can be built and updated at the same time.

In the case of any uphole re-interpretation, all surfaces (and models built using such surfaces) are updated automatically.

There are some surface operations implemented: smoothing, filling defined value, re-interpolation inside or outside of a defined polygon, or of whole surface. It is possible to perform mathematical operations on or apply simple mathematical functions to surfaces.

GeoWZ – building of near-surface models

Each model is the set of pairs of velocity and either elevation or thickness surfaces for each layer. Some "weight" can be defined for layer in order to resolve intersection conflicts.

GeoWZ – QC of the model

It is possible to use different information displays: maps, sections, graphs, tables, gathers for data and models QC at any stage of work.

GeoWZ - calculation of statics

There are three possible methods of calculation of statics:

on the base geological model, on pseudo-datum or on the floating pseudo-datum (see GeoStaR).

X-≈ Surfa

Name Surface Type

Layer type

CV22A CV21A

Curves\Control Points-

OK Cancel

) Cubic 🔘 Linear

Elevations Z Thickness Z Velocities

to:

GeoTR

An interactive application for determination of layer delays and velocity refractors, calculation of static corrections, clarifying of sources and receivers positions, and other tasks. Provides fast processing of large amounts of 2D and 3D data in the case of relatively simple structure of near-surface.

Loading gathers

Selecting offset range for refractor boundary

Selecting processing step: statics calculation, clarifying of sources and receivers positions, velocity analysis

Stacks building and picking

Next step

Delay calculation, statics correction, sources and receivers moving

Quality control solutions: updated stacks, maps, charts, gathers with the input corrections

Harmonization and export of statics corrections, delays, sources\receivers coordinates, refractor boundary velocity

GeoTR – gathers loading

Processing is made by swaths in GeoTR.

Gathers are loaded from trace file (CST) or SDS server, versus Sditr pre-input velocity corrections is not required. For each refractor, you can load separate gathers file or indicate what offset range will be used from gather swaths.

GeoTR – processing steps

group of companies

 Velacity Analysis

 Pilmary Statics

 Residual status

 S

 Stacking Geometry

 Image: Status

 S

 Stacking Geometry

 Other Status

 S

 S

 S

 S

 S

 S

 S

 S

 S

 S

 S

 S

 S

 S

 S

 S

Processing order depends on signatures relative value, the factors with great influence are processed primarily.

Processing steps:

- Velocity analysis (not more than one for refractor)
- •Main statics correction calculation (not more than one for refractor)
- •Residual statics correction calculation
- Sources positions clarifying
- •Receivers positions clarifying

Workflo

W

GeoTR

GeoTR – stacks picking

- Stacks are build on each processing step according to:
- •Sources and receivers for statics calculation
- Sources and receivers for sources and receivers positions clarifying
- •Bins\CDP for velocity analysis

While building sections, all corrections (that are already calculated in swaths) are input into traces and new positions and refractor velocity are taken into account.

Picking is performed in semi-automatic mode with CCF between traces.

GeoTR – Calculation of correction, shift, velocity

Time marks of the refractor are used from the stack (velocity specification) or sections (statics and positions calculation). The calculation is performed using a well-proven algorithms Sditr (SDREF, REPOS, etc.).

	0:Source Repositioning	
Es	timated refractor velocity in m/s or ft/s	1900.0
C)	cle correction in ms	0,0
N	umber of iterations	0:Residual statics
м	aximum for exiting iterations in meters or fee	Outs supplies is millionered.
м	inimum moving distance	
	,	Weight for iteration updating 0.9
	Apply spatial filter 🔾 Yes 🔘 No	Number of iterations 10
м	inimum radius filtering	Maximum for exiting iteration in milliseconds 0.1
м	aximum radius filtering	· · · · · · · · · · · · · · · · · · ·
L	Ok Cancel	Minimum radius filtering for residuals statics 50.0
		Maximum radius filtering for residuals statics 350.0
	Compute smoothed velocities	
lî	Kriging radius for internelation 2500 gl	
		Weathering velocity in m/s or ft/s
	Smoothing radius 300.0	
	Start Cancel	Estimated refractor velocity in m/s or ft/s 1900.0
L		Replacement velocity in m/s or ft/s 3000.0
		Ok Cancal
		OK Cancel

GeoTR – Solution QC

After calculation the solution may be visualized on map (as sources\ receivers\ bin attributes or as surface), in the table, in the chart of stack window; it can be used while mapping gathers or building "specified" stack.

GeoTR allows to define which actions shall be automatic.

		Save an mes with default names	
	and the second	Overwrite existing files	
Harmonize results of processing for s	wati	Statics	
Swath1		✓ Delays ✓ Statics	
Swath2		V Libraries Generic name Swith1 Extension Is	
		Haror Generic name Bacrach Extension St	
	store 🖉 Xps: 1006400	Peneritianing	
	1006400	Repositioning	
		Source points Receivers	
	5400	Libraries Generic name Swath1 Extension in	
Export to file /home/igor/xxx.nav	Matyge Scatters	Hacor Generic name R-crash Extension S/	
Export to XPS		Differences Generic name Swath1 Extension di	
Expert to Ars	····· P Solide +	Navp2 Generic name Swath1 Extension in	
Harmonize Cancel	5	Velocity Analysis	
	L1: 85091: His Scatter	Navp2 Generic name R-crash Extension .n.	
	Providence - Collect - Secretar	Elementary trace picking	
	P HACORYD1 : CALLASREE : Receiver Scatter	TDPIK Generic name Swath1 Extension so	ätr
• • •	2 W111 : 112 : Bis Scatter	Format New Old	
	P geoland : 8509 : Receiver Scatter	Data ® With LMO 🕓 Without LMO	
	TWILDCXYA1 : CALLASREF : In Scatter	With rough statics O Without rough state	tic
	2 07_07_09 : CALLASREF : BinScatter	WXSTA Generic name Swath1 Extension Wa	
	mavfile_art : 15 : Source Scatter	With rough statics ○ Without rough statics	tic
	WILOCXEC : CALLASREF : Bis Scatter		
	P HACOBOOKS and CALLASKEP : Kelewer State	Export Close	
	P 00003 - CALLASEE - Bin Scamer	geotr	Г
	P WILL : wiloc : Bin Scamer	Data mame	L
	2" WIL431 : 85091 : Bin Scatter	Receiver scatter	L
	C 11)	Size	L
	Selection: 1 (1.12 MiB) - Items: 67 (2.51 MiB)	1175760 (1.1 Mi8)	L
	10	1 d 1	L

Gelympus

GeoTR – Harmonization and export

Harmonization is used to average the results of work on swaths cross areas (within one processing variant). The results of the processing can be output into standard files (as Sditr), into any format and into XPS database.

GEOLEADER group of companies

Russia, 117 292, Moscow Office 259, 16/2 Dm. Ulyanova str. Tel.: +7 (495) 982 36 31

> Russia, 625051, Tyumen 43 a, Permyakova str., Tel.: +7 (3452) 31-56-07, Fax: +7 (3452) 33-79-02 info@geoleader.ru

> > www.geoleader.ru